Complementary Tree Nil Domination Number of Circular-Arc Graphs

S. Muthammai¹, G. Ananthavalli²
¹²Government Arts College for Women (Autonomous), Pudukkottai, India
¹muthammai.sivakami@gmail.com, ²dv.ananthavalli@gmail.com

Abstract: A set \(D \subseteq V \) of a graph \(G = (V, E) \) is a dominating set, if every vertex in \(V(G) - D \) is adjacent to some vertex in \(D \). The domination number \(\gamma(G) \) of \(G \) is the minimum cardinality of a dominating set. A dominating set \(D \) of a connected graph \(G \) is called a complementary tree nil dominating set if the induced subgraph \(<V(G) - D> \) is a tree and \(V(G) - D \) is not a dominating set. The minimum cardinality of a complementary tree nil dominating set is called the complementary tree nil domination number of \(G \) and is denoted by \(\gamma_{ctnd}(G) \). In this paper, some results regarding the complementary tree nil domination number of circular-arc graphs are found.

Keywords: Complementary tree domination number, complementary tree nil domination number, Circular-arc Graph.

I. INTRODUCTION

Graphs discussed in this paper are finite, undirected and simple connected graphs. For a graph \(G \), let \(V(G) \) and \(E(G) \) denote its vertex set and edge set respectively. A graph with \(p \) vertices and \(q \) edges is denoted by \(G(p, q) \).

For \(v \in V(G) \), the neighborhood \(N(v) \) of \(v \) is the set of all vertices adjacent to \(v \) in \(G \). \(N[v] = N(v) \cup \{v\} \) is called the closed neighborhood of \(v \). For any two vertices \(u \), \(v \) in \(G \), if there exists at least one \(u - v \) path, the distance \(d(u, v) \) between \(u \) and \(v \) is the minimum length of a \(u - v \) path. The eccentricity of a vertex \(v \) of a connected graph \(G \) is \(e(v) = \max \{d(u, v); v \in E(V(G))\} \). The radius of \(G \) is \(\text{rad}(G) = \min \{e(v); v \in V(G)\} \) and the diameter of \(G \) is \(\text{diam}(G) = \max \{e(v); v \in V(G)\} \). A vertex \(v \in V(G) \) is called a support if it is adjacent to a pendant vertex. That is, a vertex of degree one.

The concept of domination in graphs was introduced by Ore[3]. A set \(D \subseteq V \) of \(G \) is said to be a dominating set of \(G \) if every vertex in \(V(G) - D \) is adjacent to some vertex in \(D \). The cardinality of a minimum dominating set in \(G \) is called the domination number of \(G \) and is denoted by \(\gamma(G) \).

Some domination parameters are defined by imposing additional constraints on the complement of a dominating set. Such parameters are called codomination parameters. Based on these, the concept of nonsplit domination in graphs was introduced by Kulli and Janakiram [4]. A dominating set \(D \) of a connected graph \(G \) is a nonsplit dominating set, if the induced subgraph \(<V(G) - D> \) is connected. Complementary nil domination number of a graph was defined and studied by T. Tamil Chelvam and S. Robinson Chellathurai [5]. A set \(D \subseteq V \) of \(G \) is said to be a complementary nil dominating set (ctnd-set) of a graph \(G \) if it is a dominating set and its complement \(V - D \) is not a dominating set for \(G \). The minimum cardinality of a ctnd-set is called the complementary nil domination number of \(G \) and is denoted by \(\gamma_{ctnd}(G) \).

Muthammai, Bhunumathi and Vidhya[5] introduced the concept of complement tree dominating set. A dominating set \(D \subseteq V \) of \(G \) is said to be a complement tree dominating set (ctd-set) if the induced subgraph \(<V(G) - D> \) is a tree. The minimum cardinality of a ctd-set is called the tree dominating number of \(G \) and is denoted by \(\gamma_{ctd}(G) \). We introduced the concept of complementary tree nil dominating set [7]. A dominating set \(D \subseteq V \) of \(G \) is said to be a complementary tree nil dominating set (ctnd-set) if the induced subgraph \(<V(G) - D> \) is a tree and \(V(G) - D \) is not a dominating set. The minimum cardinality of a ctnd-set is called the complementary tree nil domination number of \(G \) and is denoted by \(\gamma_{ctnd}(G) \).

Circular-arc graphs are a new class of intersection graphs, defined for a set of arcs on a circle. A graph is a circular-arc graph, if it is the intersection graph of a finite set of arcs on a circle. That is, there exists one arc for each vertex of \(G \) and two vertices in \(G \) are adjacent in \(G \), if and only if the corresponding arcs intersect. Let \(A = \{A_1, A_2, ..., A_n\} \) be a circular-arc family on a circle, where all the arcs together cover the entire circle. An arc \(A_i \) and \(A_j \) are said to intersect each other if they have nonempty intersection.

II. PRIOR RESULTS

Theorem 2.1. [5] Let \(G \) be a connected graph with \(p \geq 4 \). Then \(\gamma_{ctd}(G) = p - 1 \) if and only if \(G \) is a star on \(p \) vertices.

Theorem 2.2. [7] A complementary tree nil dominating set \(D \) of a connected graph \(G \) is minimal if and only if for each vertex \(v \) in \(D \), one of the following conditions holds.

(a) \(v \) is an isolated vertex of \(D \).

(b) There exists a vertex \(u \) in \(V - D \) such that \(N(u) \cap D = \{v\} \).

(c) \(V - (D - \{v\}) \) is a dominating set of \(G \).

(d) \(V - (D - \{v\}) \) either contains cycle or disconnected.

Theorem 2.3. [7] For any connected graph \(G \) with \(p \) vertices, \(2 \leq \gamma_{ctnd}(G) \leq p \), where \(p \geq 2 \).
Theorem 2.4. [7] Let D be a ctn of a connected graph G and S be the set of all pendant vertices in $<V(G) - D>$. If there exists a vertex $v \in D$ such that $N(v) \cap (V(G) - D) \subseteq S$, then $\gamma_{cnd}(G) \leq \gamma_{ctn}(G) + m$, where $m = |N(v) \cap (V - D)|$.

Theorem 2.5. [7] For any connected graph G with $\delta(G) \geq 2$, $\beta_D(G) + 1 \leq \gamma_{ctn}(G)$.

Theorem 2.6. [7] If G is a connected graph with $\gamma_{ctn}(G) = 3$ and if $\delta(G) \geq 2$, then $\text{diam}(G) \leq 4$.

Theorem 2.7. [7] Let D be a ctn of a connected graph G with ρ being the family of all pendant vertices in G. Therefore $\gamma_{ctn}(G) = 3$ and if $\delta(G) \geq 2$, then $\text{diam}(G) \leq 4$.

III. MAIN RESULTS

In the following, a necessary and sufficient condition that $\gamma_{cnd}(G) = n$ for a circular-arc graph is obtained.

Theorem 3.1: Let $A = \{A_1, A_2, ..., A_n\}$, $(n \geq 3)$ be a circular-arc family corresponding to a circular-arc graph G. Then $\gamma_{cnd}(G) = n$ if and only if each arc $A_i \in A$ dominates all other arcs in A.

Proof: Let $A = \{A_1, A_2, ..., A_n\}$, $(n \geq 3)$ be a circular-arc family corresponding to a circular-arc graph G.

Assume that $\gamma_{cnd}(G) = n$. Let $A_1, A_2 \in A$ be two nonintersecting arcs in A. Consider the graph $G - \{A_1, A_2\}$. Then $\gamma_{cnd}(G) \leq n-1$, which is a contradiction. Hence each arc $A_i \in A$ dominates all other arcs in $A - \{A_i\}$.

Conversely, assume each arc $A_i \in A$ dominates all other arcs in A. Then $\gamma_{cnd}(G) = n$.

Example 3.1: Consider the circular-arc family $A = \{A_1, A_2, A_3, A_4\}$ corresponding to a circular-arc graph G given in Fig (3.1).

Fig (3.1)

This circular-arc family A satisfies all the conditions mentioned in Theorem 3.1, for $n = 5$. The complementary tree nil domination number of the circular-arc graph G corresponding to this family is 5.

In the following, a necessary and sufficient condition that $\gamma_{cnd}(G) = n-1$, $(n \geq 4)$ for a circular-arc graph G is obtained.

Theorem 3.2: Let $A = \{A_1, A_2, ..., A_n\}$, $(n \geq 4)$ be a circular-arc family corresponding to a circular-arc graph G, $G \notin K_n$, $(n \geq 4)$ and let each arc $A_i \in A$ intersects at least two arcs in $A - \{A_i\}$, $i = 1, 2, ..., n$. Then $\gamma_{cnd}(G) = n - 1$ if and only if each pair of intersecting arcs A_i, A_j $(i \neq j)$, each arc in $A - \{A_i, A_j\}$ intersects at least one of A_i and A_j.

Proof: Let $A = \{A_1, A_2, ..., A_n\}$, $(n \geq 4)$ be a circular-arc family corresponding to a circular-arc graph G. Let $v_1, v_2, ..., v_n$ be the vertices in G corresponding to arcs $A_1, A_2, ..., A_n$ respectively.

Assume each arc $A_i \in A$ intersects at most one arc in $A - \{A_i\}$, $i = 1, 2, ..., n$ and $\gamma_{cnd}(G) = n - 1$. Let A_i and A_j be two intersecting arcs in A. Let D be a subset of G such that D is not a nil dominating set of G. Hence $\gamma_{cnd}(G) \leq n - 2$, which is a contradiction.

Hence each arc in $A - \{A_1, A_2\}$ intersects at least one of A_1 and A_2.

Conversely, assume each arc $A_i \in A$ intersects at least one of A_1 and A_2. Since $G \notin K_n$, $(n \geq 4)$, there exists at least two nonintersecting arcs in A. Hence $\gamma_{cnd}(G) = n - 1$.

Let D be a ctn of G with $|D| = n - 2$. Let A_1, A_2 be the arcs corresponding to the vertices u, v in $V(G) - D$.

Then the arcs in A corresponding to the vertices of G in $V(G) - D$ are intersecting arcs and by assumption, A_i corresponding to vertices in D intersect at least one of A_1 and A_2. Then D will not be a nil dominating set of G. Therefore, $|D| \geq n - 1$. Hence, $\gamma_{cnd}(G) = n - 1$.

Example 3.2: The circular-arc family $A = \{A_1, A_2, A_3, A_4\}$ corresponding to a circular graph G for which $\gamma_{ctn}(G) = n = 1$ is given in Fig (3.2).

The circular-arc family satisfies all the conditions mentioned in Theorem 3.2, for $n = 5$. The complementary tree nil domination number $\gamma_{cnd}(G)$ of this graph is 4. The set of arcs due to minimum ctn of G are $\{A_1, A_2, A_3, A_4\}$ and $\{A_1, A_2, A_3, A_4\}$.

Fig (3.2)

Remark 3.1: Let any two arcs in A be intersecting arcs. If A can be partitioned into two sets X and Y such that $|X| = m (1 \leq m < n - 1)$ and any pair of arcs in X is nonintersecting and each arc in X intersects exactly one arc in Y, then $\gamma_{cnd}(G) \geq m + 1$.

Available Online at www.ijeecse.com
In the following, a necessary and sufficient condition that $\square_{ctnd}(G) = n - 1$, (where $\delta(G) = 1$) for a circular-arc graph G is obtained.

Theorem 3.3: Let $A = \{A_1, A_2, \ldots A_n\}$, $(n \geq 3)$ be a circular-arc family analogous to a circular-arc graph G. For any two intersecting arcs A_i, A_j $(i \neq j)$, each arc in $A - \{A_i, A_j\}$ intersects atmost one of A_i and A_j. Then $\square_{ctnd}(G) = n - 1$ if and only if there exists a pair of intersecting arcs, say A_l and A_m $(l \neq m)$ in A such that either (i) All the arcs in $A - \{A_l, A_m\}$ intersects A_l or all the arcs in $A - \{A_l, A_m\}$ intersects A_m, $(1 \leq l, m \leq n, l \neq m)$ or (ii) Some of the arcs in $A - \{A_l, A_m\}$ intersects A_l and the remaining arcs in $A - \{A_l, A_m\}$ intersects A_m, respectively.

Let A_l and A_m $(l \neq m)$ be any two intersecting arcs in A. If (i) or (ii) is satisfied, then either $V(G) - \{v_l\}$ or $V(G) - \{v_m\}$ is a $ctnd$ - set of G. Therefore, $\square_{ctnd}(G) \leq n - 1$. Also the vertices of G corresponding to the arcs in $A - \{A_l, A_m\}$ are pendant vertices in G. Therefore by Remark 3.1., $\square_{ctnd}(G) \geq n - 2 + 1 = n - 1$ and hence $\square_{ctnd}(G) = n - 1$.

Conversely, assume $\square_{ctnd}(G) = n - 1$ and A_l, A_m are any two intersecting arcs in A. If there exists an arc in $A - \{A_l, A_m\}$ intersecting none of A_l and A_m, then $V(G) - \{v_l, v_m\}$ is a $ctnd$ - set of G and hence $\square_{ctnd}(G) \leq n - 2$. Therefore

either (i) all the arcs in $A - \{A_l, A_m\}$ intersects A_l or all the arcs in $A - \{A_l, A_m\}$ intersects A_m, $(1 \leq l, m \leq n, l \neq m)$ or (ii) some of the arcs in $A - \{A_l, A_m\}$ intersects A_l and the remaining arcs in $A - \{A_l, A_m\}$ intersects A_m.

Example 3.3: The circular-arc family $A = \{A_1, A_2, A_3, A_4, A_5, A_6\}$ corresponding to a circular graph G, for which $\square_{ctnd}(G) = n - 1$ is given in Fig (3.3).

The circular-arc family satisfies all the conditions mentioned in Theorem 3.3., for $n = 7$. The complementary tree nil domination number of this graph is 6. The set of arcs due to minimum $ctnd$ - sets of G are $\{A_2, A_3, A_4, A_5, A_6\}$ and $\{A_1, A_2, A_3, A_4, A_5\}$.

In the following, In the following, a necessary and sufficient condition that $\square_{ctnd}(G) = 2$ for a circular-arc graph G is obtained.

Theorem 3.4: Let $A = \{A_1, A_2, \ldots A_n\}$, $(n \geq 3)$ be a circular-arc family corresponding to a circular-arc graph G and let A_l and A_j $(i \neq j)$ be any two intersecting arcs. Then $\square_{ctnd}(G) = 2$ if and only if all the arcs in $B = A - \{A_l, A_j\}$ intersect exactly one of A_l and A_j, say A_l and for any two intersecting arcs A_s, A_r $(s \neq m)$ in B, each arc in $B - \{A_s, A_r\}$ intersects atmost one of A_l and A_m.

Proof: Let $A = \{A_1, A_2, \ldots A_n\}$, $(n \geq 3)$ be a circular-arc family corresponding to a circular-arc graph G. Let $v_1, v_2, \ldots v_n$ be the vertices corresponding to the arcs $A_1, A_2, \ldots A_n$ respectively. Assume $\square_{ctnd}(G) = 2$. Let $D = \{v_i, v_j\}$ be a $\square_{ctnd}(G)$ - set of G. Since $V(G) - D$ is not a dominating set of G, there is a vertex, say $v \in D$ with $N(v) \subseteq D$. That is, v_i is adjacent to v in G. Also each vertex in $V(G) - D$ is adjacent to v. Therefore A_l and A_j are intersecting arcs in A and all the arcs in $A - \{A_l, A_j\}$ intersect A_l. Since $V(G) - D$ is a tree, for any two intersecting arcs A_s, A_r, $(s \neq r)$ in B, each arc in $B - \{A_s, A_r\}$ intersects atmost one of A_l and A_m.

Conversely, assume A_l and A_j $(i \neq j)$ are two intersecting arcs, and all the arcs in $B - \{A_l, A_j\}$ intersect A_l and for any two intersecting arcs A_s, A_r $(s \neq r)$ in B, each arc in $B - \{A_s, A_r\}$ intersects atmost one of A_l and A_m. But there is no circular-arc graph G for which $\square_{ctnd}(G) = 1$. Therefore $\square_{ctnd}(G) = 2$.

Example 3.4: The circular-arc family $A = \{A_1, A_2, A_3, A_4, A_5\}$ corresponding to a circular graph G, for which $\square_{ctnd}(G) = 2$ is given in Fig (3.4).

The circular arc family satisfies all the conditions mentioned in Theorem 3.4., for $n = 6$. The
complementary tree nil domination number of this graph is 2. The set of arcs due to minimum ctnd - sets of G is $\{A_1, A_2\}$.

IV. REFERENCES

